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To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle
function and strength. Because human movement for normal daily activity occurs in multi-dimensions,
the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently,
a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was intro-
duced for clinical use. However, the abdominal muscle activity with this device has not been reported.
The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external
and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface),
foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this
study. Using electromyography, the abdominal muscle activity was measured while the subjects per-
formed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences
in the abdominal muscle activities among conditions (P < .05), except for left EO (P > .05) (Fig. 2). After
the Bonferroni correction, however, no significant differences among conditions remained, except for
differences in both side IO muscle activity between the floor and foam roll conditions (padj < 0.017).
The findings suggest that performing the SLH exercises on a foam roll and MRP is more effective increased
activities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no
significant differences in abdominal muscles activity in the multiple comparison between conditions (mean
difference were smaller than the standard deviation in the abdominal muscle activities) (padj > 0.017),
except for differences in both side IO muscle activity between the floor (stable surface) and foam roll
(padj < 0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor).

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction lead to pain relief in LBP patients with spine instability (Panjabi,
Low-back pain (LBP) is one of the most common and costly
health problems in western societies, with 5–10% of all LBP
patients becoming chronically disabled, accounting for 90% of the
cost of this condition (Anderson, 1999). Decreased spine stability
is one of the most common causes of LBP (McGill et al., 2003;
Cholewicki and McGill, 1996; Norris and Matthews, 2008;
Hodges and Richardson, 1996). It is suggested that improved con-
trol and stability of spine would reduce mechanical irritation and
1992). The spine stability is achieved by sufficient trunk muscle
activation and coordination (McGill et al., 2003).

To treat LBP, various spinal stability exercises without or with
therapeutic devices are used to improve the function and strength
of the trunk muscles (Behm et al., 2005; Kim et al., 2011; Marshall
and Murphy, 2005), which protect the lumbar segments against
repetitive microtrauma that could lead to LBP (Davidson and
Hubley-Kozey, 2005). In early stage, spinal stability exercise can
be enhanced by facilitating a co-contraction and isolated contrac-
tion of the muscles surrounding lumbar spine (Richardson et al.,
1990). For the exercise progression (dynamic spine stability), spinal
stabilization exercise using an unstable surfaces, such as a gym ball
or wobble board, have been used to increase the difficulty of spinal
stability exercises (Vera-Garcia et al., 2000). An asymmetric load
on the trunk muscles induced by a unilateral single-leg-hold (SLH)
exercise on an unstable foam roll causes rotation load on lumbar spine,
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Fig. 1. (A) Floor, (B) foam-roll, and (C) motorized rotating platform.
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The subjects were familiarized with each condition for 30 min
before testing. During the familiarization period, the principal
investigator instructed the subjects to move their non-supporting
leg until the predetermined SLH position was reached. The subject
was asked to use the fingertips of both hands on the surface to
maintain balance. The amount of support from the fingertips
decreased gradually over the familiarization period, which finished
when the participant could maintain three consecutive 5-s SLH
exercises under each condition. All of the subjects were comfort-
able after the familiarization period, and none reported fatigue. A
15-min rest was allowed after the familiarization period before
data collection began. The order of testing was randomized using
the random number generator in Microsoft Excel (Microsoft, Red-
mond, WA, USA). Under each condition, the subject extended the
knee joint of non-supporting leg while maintaining knees of sup-
porting leg flexed at 70� and then sustained an isometric contrac-
tion of non-supporting leg for 5 s. Three trials were performed with
a 1-min rest between trials. A 3-min rest was provided between
conditions. The mean value of the three trials under each condition
was calculated.
2.4. Data collection and processing

The sampling rate was 1000 Hz. A band-pass filter between 20
and 300 Hz was used. The EMG data were processed into the
root-mean-square (RMS) value, which was calculated from 50-ms
data windows. To remove noise, motion data were filtered using
a second-order zero-lag low-pass Butterworth filter with the
20 Hz of cut-off frequency and EMG data were filtered using a
4th-order zero-lag band-pass Butterworth filter with the 20–
300 Hz of cut-off frequency. Before data collection, we performed
frequency analysis using FFT (Fast Fourier Transformation) to
confirm ECG artifact. However, we did not assure to remove com-
pletely ECG crosstalk in the EMG data. The EMG data were normal-
ized by calculating the mean RMS of three trials of a maximum
voluntary isometric contraction (MVIC) for each muscle during a
50 ms window about the average activation. We used the manual
muscle-testing positions recommended by Kendall and McCreary
(2005) for measuring the MVIC. For the RA, the subject was in
supine, with hips and knees flexed 90�, feet supported, and trunk
maximally flexed (curl-up position), with resistance provided at
the shoulders by a tester pushing in the trunk extension direction;
for the EO, the subject was in supine, with hips and knees flexed
90�, feet supported, and trunk maximally flexed and rotated to
the left, with resistance at the shoul ders by a tester pushing in
the trunk ex tension and right rotation directions; for the IO, the
subject was in su pine, with hips and knees flexed 90�, feet
supported, and trunk maximally flexed and rotated to the right,
with resistance at the shoulders by a tester pushing in the trunk
extension and left rotation directions. Each contraction was held
for 5 s with maximum effort against manual resistance. The first
and last second of the EMG data from each MVIC trial were
discarded, and the remaining 3 s of data were used (Kim et al.,
2011). Three repetitions of each test were performed, with a
2-min rest between repetitions to minimize muscle fatigue
(Vera-Garcia et al., 2010). The mean MVIC value of the three trials
was calculated.

2.5. Statistical analysis

The SPSS statistical package (SPSS, Chicago, IL, USA) was used to
analyze the differences in the RA, EO, and IO muscles. The
Kolmogorov–Smirnov Z test were performed to assess whether
continuous data approximated a normal distribution. One-way
analysis of variance (ANOVA) with repeated measures was used,
with the significance level set at .05. When a significant difference
was found, Bonferroni’s adjustment was used with a significance
level of 0.017 (.05/3). The effect size ‘‘d’’ was calculated to deter-
mine the standardized mean difference between exercises for each
muscle. Effect sizes were classified as small (d = 0.20), medium
(d = 0.50), or large (d = 0.80) (Portney and Watkins, 2009).

3. Results

The Kolmogorov–Smirnov Z test showed normal distribution in
dependent variables (P > .05). The normalized EMG data and
results of the statistical analyses are shown in Fig. 2. There were
significant differences in the abdominal muscle activities among
conditions (P < .05), except for left EO (P > .05) (Fig. 2). After the
Bonferroni correction, however, no significant differences among
conditions remained, except for differences in both side IO muscle
activity between the floor and foam roll conditions (padj < 0.017)
(Fig. 2). In our study, the effect size for the RA muscle was 1.04/
0.74 (non-supporting/supporting leg) for MRP vs Floor, 0.24/0.03
for MRP vs Foam-roll, 0.77/0.065 for Foam-roll vs Floor. In the EO
muscle, the effect size was 0.90/0.65 MRP vs Floor, 0.26/0.02 for
MRP vs Foam-roll, 0.73/0.76 for Foam-roll vs Floor. In the IO mus-
cle, the effect size was 0.80/0.67 MRP vs Floor, 0.12/0.20 for MRP vs
Foam-roll, 0.79/0.62 for Foam-roll vs Floor.

4. Discussion

This study investigated the effect of surface on bilateral abdom-
inal muscle activity during a SLH exercise performed on the floor,
a foam roll, and a MRP. This study showed significant differences
in the bilateral abdominal muscles activity among conditions
(P < .05), except for EO (supporting leg side). Although our results
demonstrated differences in abdominal activities among conditions,



Fig. 2. Comparison of the abdominal muscle activity among 3 different surface
conditions. (A) Rectus abdominis muscle, (B) external oblique muscle, and (C)
internal oblique muscle. � Significant difference between conditions (Padj < .017).
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however, there were no significant differences in abdominal mus-
cles activity in the multiple comparison between conditions (mean
difference were smaller than the standard deviation in the abdomi-
nal muscle activities), except for differences in both side IO muscle
activity between the floor and foam roll conditions (padj < 0.017).
The results did not support our hypothesis that performing the
SLH on MRP condition would elicit greater activity in abdominal
muscles than performing it on other condition (see Table 1).

There were several explanations for our results. First, the
dynamic rotating surface movement on the MRP and foam-roll
can induce a greater perturbation for abdominal muscle activity
to maintain spine stability, compared with floor condition. Com-
pared with the floor (stable surface), performing the SLH on a
foam-roll or MRP increased perturbation of the spine due to the
unstable surface. The results of the present study showed that
activity of abdominal muscles greater in unstable surface, which
is similar to results of previous studies (Marshall and Murphy,
2005; Vera-Garcia et al., 2000). A unilateral SLH exercise on an
unstable foam roll may have caused more lumbar axial rotation,
which is more effective at recruiting abdominal muscle activity
than is exercise on a floor (stable surface) (Kim et al., 2011). On
the MRP, the abdominal muscles expend more effort to maintain
the spine stability against the continuous surface tilt change,
which can lead to increased joint stiffness to assist counterbalanc-
ing body perturbation (Santos and Aruin, 2009). Second, the MRP
involves more movement dimensions than other conditions do
(i.e., two dimensions for the foam roll, one dimension for the floor),
which might contribute to the increased abdominal muscle activity
needed to maintain spine stability. Richards and Dawson (2009)
reported that multidirectional movement (multi-directional ‘‘8’’
and ‘‘1’’) was advantageous for muscle strengthening and motor
unit recruitment compared with unidirectional exercise. Spine
movement occurs in the multi-directions, and abdominal muscles
react to multidirectional perturbation for dynamic stabilization of
the spine in daily activities (Brown et al., 2006). The devices for
multidirectional movement on an oscillating unstable surface were
have been recommended to improve balance and abdominal mus-
cle function by in therapeutic program (Kim et al., 2014). Third, an
IO muscle contraction increases intra-abdominal pressure, which
play key role in maintaining lumbar spine stability because the
IO muscle blends with the lateral raphe of the thoracolumbar fascia
(Williams et al., 1989). On the MRP and foam-roll conditions with
SLH, spine stability is further challenged by surface‘s perturbation,
compared to floor condition (effect size: 0.80/0.67 (non-support-
ing/supporting leg) MRP vs Floor, 0.79/0.62 for Foam-roll vs Floor).
Some variables showed large effect size, however, there was no
significant difference in post hoc analysis between conditions
(Table 2). These results may due to small sample size and large
standard deviation.

Compared with the floor condition (RA: 6.7 ± 3.8%/7.8 ± 5.9%,
EO: 19.9 ± 13.1%/18.0 ± 13.1%, IO: 12.6 ± 13.2%/18.4 ± 12.3%),
increased abdominal muscles activity was associated with control-
ling spinal rotation under the foam roll condition (RA: 11.2 ± 8.1%/
13.9 ± 13.1%, EO: 32.8 ± 22.2%/31.1 ± 21.2%, IO: 26.7 ± 22.7%/
27.8 ± 18.2%) and MRP condition (RA: 13.2 ± 8.9%/13.5 ± 9.6, EO:
39.7 ± 31.1/30.7 ± 26.2%, IO: 29.7 ± 29.5%/32.8 ± 31.0%). To be clin-
ically relevant, the mean difference in muscle activity must be at
least 10% MVIC (Reinold et al., 2004). Although there were no sig-
nificant differences in muscle activity of the abdominal muscles
between the foam roll and MRP conditions, activity of abdominal
muscles, except for RA and EO in the supporting leg side relatively
greater in MRP condition. The supporting leg in the MRP condition
was fixed on the moving extended platform, it makes more diffi-
cult to maintain stability of supporting leg compared with foam-
roll condition. The foot on the fixed floor in foam-roll condition
makes easy to maintain stability of supporting leg. Different sup-
porting surface may contribute to increased muscle activity of
abdominal muscles, except for or RA and EO in the supporting
leg side in MRP condition.

The experimental methods of the present study need further
discussion. Although the ECG noise is very common for abdominal
muscles activities in EMG study, we did not perform ECG cancella-
tion. The reason is that it is difficult to remove the contamination
algorithmically because of the ECG’s complicated waveform, which
is accompanied by a broad-band spectral distribution. To reduce
the effects of the ECG artifact, the ECG should be removed, how-
ever, removal of the ECG is complicated since the EMG and the
ECG frequency spectrum overlap (surface EMG 20–500 Hz; ECG
0–200 Hz). One difference is that the majority of the power of
ECG is found at frequencies less than 45 Hz whereas the peak
power for EMG is approximately 100 Hz. In our study, all EMG data
were checked visually to ensure that they were valid and not inter-
rupted by artifact from movement or the ECG.

There are some limitations to this study. First, the generalizabil-
ity of the study is limited because we recruited only healthy male
subjects; future studies are necessary to determine whether our



Table 1
EMG activities (%MVIC) of abdominal muscles among 3 different conditions.

Muscle Condition F P

Floor Foam-roll MRP

RA NS 6.7 ± 3.8a 11.2 ± 8.1 13.2 ± 8.9 4.57 0.02*

S 7. 8 ± 5.9 13.9 ± 13.1 13.5 ± 9.6 4.38 0.03*

EO NS 19.9 ± 13.1 32.8 ± 22.2 39.7 ± 31.1 9.13 0.02*

S 18.0 ± 13.1 31.1 ± 21.2 30.7 ± 26.2 7.13 0.14

IO NS 12.6 ± 13.2 26.7 ± 22.7 29.7 ± 29.5 8.01 0.03*

S 18.4 ± 12.3 27.8 ± 18.2 32.8 ± 31.0 5.86 0.02*

RA: rectus abdominal muscle; IO: internal oblique muscle; EO: external oblique muscle; MRP: motorized rotating platform.
a Mean ± SD (%MVIC), NS: non-supporting leg; S: supporting leg.
* Significant difference among surface condition (P < .05).

Table 2
Multiple comparisons between conditions.

Muscle Condition comparison P Effect size

RA NS Floor vs foam-roll 0.071 0.77
Floor vs MRP 0.046 1.04
Foam-roll vs MRP 1.000 0.24

S Floor vs foam-roll 0.087 0.65
Floor vs MRP 0.035 0.74
Foam-roll vs MRP 1.000 0.03

EO NS Floor vs foam-roll 0.018 0.73
Floor vs MRP 0.018 0.90
Foam-roll vs MRP 0.465 0.26

S Floor vs foam-roll 0.034 0.76
Floor vs MRP 0.210 0.65
Foam-roll vs MRP 1.000 0.02

IO NS Floor vs foam-roll 0.007* 0.79
Floor vs MRP 0.037 0.80
Foam-roll vs MRP 1.000 0.12

S Floor vs foam-roll 0.015* 0.62
Floor vs MRP 0.123 0.67
Foam-roll vs MRP 0.901 0.20

RA: rectus abdominal muscle; IO: internal oblique muscle; EO: external oblique muscle, NS: non-supporting leg; S: supporting leg.
* Significant difference between conditions (Padj < .017).
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findings can be generalized to the patients with LBP and female. Sec-
ond, this was a cross-sectional study, and a longitudinal follow-up
study is warranted to determine the long-term effects of the foam
roll and MRP SLH exercise on improving spine stability in LBP
patients with spine instability. Third, main limitation of this study
is the small sample size and very high variability of the EMG, there-
fore, the results of the present study have some limitations for gen-
eralization. And, we did not filter ECG noise. Therefore, the ECG
signal may affect the EMG signals. Fourth, we did not monitor spine
motion during the SLH, therefore, we cannot be sure regarding any
spine motion that may or may not have occurred during the SLH.
Further study is need to measure the spine motions during SLH.
5. Conclusions

This study examined the effects of performing a SLH on a floor
(stable surface), a foam roll, or a MRP. The findings suggest that per-
forming the SLH exercises on a foam roll and MRP is more effective
increased activities of both side of RA and IO, and Rt. EO compared
to floor condition. However, there were no significant differences
in abdominal muscles activity in the multiple comparison between
conditions (mean difference were smaller than the standard devia-
tion in the abdominal muscle activities) (padj > 0.017), except for dif-
ferences in both side IO muscle activity between the floor (stable
surface) and foam roll (padj < 0.017) (effect size: 0.79/0.62 (non-sup-
porting/supporting leg) for Foam-roll vs Floor).
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