

Interesting Articles for **KEMA** Members

다양한 방법의 "한쪽다리 체중 지지 운동" 목적에 맞게 적용하세요.

Muscle Activation in Unilateral Barbell Exercises:
Implications for Strength Training and
Rehabilitation

Journal of Strength Conditioning Research

2018; doi: 10.1519/JSC.0000000000002617. [Epub ahead of print]

한쪽다리 체중 지지 운동 Unilateral Weight-bearing exercise

"한쪽다리 체중 지지 운동"은 하지의 저항 훈련 프로그램중 하나입니다. 한쪽 다리 체중 지지 운동을 통해

[재활 / 운동 능력 향상 / 부상 예방]의 효과를 가질 수 있습니다.

양쪽 다리 체중 지지 운동 (스쿼트, 데드리프트 등) 과 비교하여, 한쪽 다리 체중 지지 운동은

✓ 더 기능적이고, 스포츠와 관련되어 있습니다.

✓ 더 적은 외부저항(바벨, 덤벨 등)으로도 하지 근육에 자극을 줄 수 있기 때문에 허리에 통증이 있는 환자에 게 척주에 적용되는 부하의 양을 줄여 주어 더 효과적 입니다.

한쪽다리 체중 지지 운동 Unilateral Weight-bearing exercise

한쪽 다리 체중 지지 운동에 변화를 주는 것은
[앞쪽다리와 뒤쪽 다리에 분배되는 부하/ 안정성/ 균형감각]에 변화를 줄 수 있기 때문에,
재활과 운동의 분야에서 다양하게 발전되었습니다.

대표적인 분류:

- ✓ 스플릿 스쿼트 split squat(SS)
- ✓ 뒷다리를 올린 스플릿 스쿼트 Rearfoot elevated split squat(RFESS)
- ✓ 한다리 스쿼트 single leg squat (SLS)

그렇다면 이러한 다양한 한쪽다리 체중 지지 운동에 따<mark>른 하지의 근육</mark> 사용은 어떤 차이가 있을까요?

실험 방법

대상자

건강한 20대 대상자(남자 7명, 여자 5명) 최근 6개월 이내에 근력 운동의 경험이 있고 동작 수행이 익숙한 사람

실험 과정

Session 1)

세가지 동작 각각에 대해 적절한 부하 적용을 위해 RM을 측정 - 6번 동안 동작을 정확하게 수행할 수 있는 최대 무게를 결정한다 (6RM)

Session 2)

세가지 각각의 동작을 6RM의 무게 바벨을 적용하<mark>여 6회 수행</mark>

- 동작의 순서는 무작위로 한다.
- 동작과 동작 사이 5분의 휴식으로 피로를 예방<mark>한다.</mark>

동작을 수행하는 동안 EMG를 이용하여 근전도를 분<mark>석</mark>

- 큰볼기근(Gluteus maximus), 중간볼기근(Gluteus medius), 넙다리두갈래근(Biceps femoris), 가쪽넓은<mark>근(Vastus lateralis)</mark>
- 각 동작에 대해 여섯번째 반복에서 최대 근전도값을 사용
- MVIC 방법을 이용해 표준화한다.

운동 동작 설명

- 모든 동작의 외부 부하는 바벨을 이용하고, 어깨에 거는 방식으로 적용한다.
- 모든 측정은 우세다리를 기준으로 한다.

스플릿 스쿼트 (SS)

- 앞발과 뒷발의 간격: 다리길이
- ▶ 양 발의 간격 (발의 폭): 골반넓이의 75%

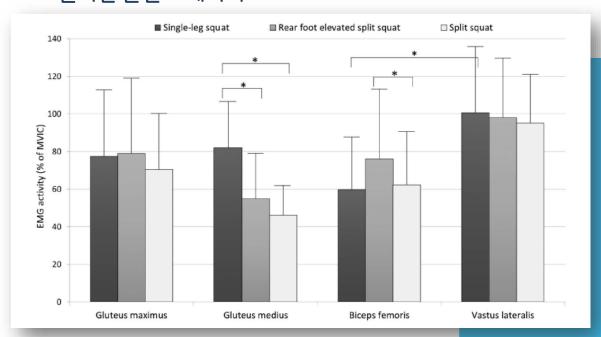
무릎이 바닥에 닿을 때까지 내려갔다 올라온다.

한다리 스쿼트 (SLS)

▶ 시작 자세의 높이: 정강이 길이

뒤쪽 다리 (비우세다리)가 바<mark>닥에 가볍게 닿을 때까지</mark> 내려갔다 올라온다.

뒷다리를 올린 스플릿 스쿼트 (RFESS)


- ▶ 앞발과 뒷발의 간격: 다리길이
- 양 발의 간격 (발의 폭): <mark>골반넓이의 75%</mark>
- 뒷발의 높이: 정강이 길이

무릎이 밸런스 패드에 닿을 때까지 내려갔다 올라온다.

• 각각의 동작에 대한 6RM 부하 무게

	Mean ± SD (range)
SLS RFESS SS	48.2 ± 10.7 (30-65)† 57.3 ± 14.3 (40-90)† 70.9 ± 19.1 (50-110)†
*SLS = single-leg squat; RFESS = rear foot elevated split squat; SS = split squat.	

• 표준화한 근전도 데이터

- ✓ 모든 운동에서 큰볼기근과 가쪽넓은근의 사용은 비슷했다.
- ✓ 한다리 스쿼트 (SLS)를 할 때 중간볼기근이 사용이 유의하게 증가 했다.
- ✓ 뒷다리를 올린 스플릿 스쿼트 (RFESS)를 할 때 넙다리 두갈래근
 의 사용이 유의하게 증가하였다.

연구 결과 모든 운동에서 주동근 (큰볼기근, 가쪽넓은근)의 근활성은 비슷한 정도로 발생하였습니다.

SLS에서는 다른 동작에 비해 중간 볼기근이 유의하게 많이 사용되었습니다.

이것은 한다리스쿼트 시 한쪽 다리만 지지되어 있기 때문에 무게 중심이 지지 다리에 가까이 있고, 이것은 엉덩관절 모음 힘으로 작용이 되기 때문에, 그에 대해 다리의 정렬을 유지하기 위해 엉덩관절 벌림근(중간볼기근)의 활성이 증가한 것이라고 해석됩니다.

또한 RFESS에서 넙다리두갈래근의 사용이 유의하게 증가되었습니다.

RFESS에서는 몸통의 각도가 더 경사져있기 때문에 넙다리두갈래근의 근활성도가 증가한 것으로 보이지만, 몸통의 각도에 관한 연구는 이 연구에서 수<mark>행되지 않았기 때문에 해</mark>석에 제한적이라고 말합니다.

따라서 "한다리 체중 지지 운동을 어떻게 적용하는 것이 좋을까요?" 에 대한 근골격계 전문가인 우리의 답변은

"세가지 동작 모두 큰볼기근과 가쪽넓은근의 강화에 효과적이지만 중간볼기근의 강화를 위해서는 SLS가, 넙다리두갈래근의 강화를 위해서는 RFESS를 하는 것이 효과적입니다."

라고 이 논문을 근거로 이야기 할 수 있을 것입니다.

- KEMA 책임 연구원 안선희 -

-문의사항은 KEMA 홈페이지 Q&A 란에 남겨주세요-

